Free Tool

How to Generate Synthetic Data: Step-by-Step Guide for Developers and Data Scientists

Complete tutorial on generating synthetic data using AI, statistical methods, and modern tools. Learn practical techniques for creating realistic datasets safely and efficiently.

12 min read
Updated 2024-01-15

Try Our Free Generator

Learn by Doing: Interactive Tutorial

Follow along with our hands-on tutorial. Start with simple data generation and progressively build more complex, realistic datasets using the techniques covered in this guide.

1
Statistical Methods

  • • Normal & log-normal distributions
  • • Correlation matrices
  • • Probability distributions
  • • Random sampling techniques
age = np.random.normal(35, 12, 1000)
income = np.random.lognormal(10.5, 0.6)

2
Rule-Based Logic

  • • Business rule enforcement
  • • Conditional field generation
  • • Constraint validation
  • • Industry-specific patterns
if customer_income > 80000:
  order_size = random.randint(2, 8)

3
AI-Powered Generation

  • • GANs & VAEs
  • • Language model generation
  • • Pattern learning
  • • High-fidelity realism
fake = Faker('en_US')
profile = fake.profile()

Quality Validation

  • • Statistical distribution tests
  • • Correlation preservation
  • • Business rule compliance
  • • Privacy protection metrics
  • • Performance benchmarking

Export & Integration

  • • Multiple format export (JSON, CSV, SQL)
  • • API integration patterns
  • • Testing framework setup
  • • Database seeding
  • • CI/CD pipeline integration

Tutorial Progress Tracker

Define Requirements
Use case & schema
2
Choose Method
Statistical vs AI
3
Validate Quality
Test & measure
4
Scale & Optimize
Performance tuning
5
Export & Deploy
Integration ready

Dummy Data Generator in Action

See how our tool generates realistic test data with advanced customization options

Getting Started with Synthetic Data Generation

Generating synthetic data has become an essential skill for modern developers, data scientists, and organizations seeking privacy-safe alternatives to real datasets. This comprehensive guide walks you through the entire process, from choosing the right approach to implementing production-ready synthetic data pipelines.

Whether you're building AI models, testing applications, or conducting research, understanding how to generate fake data that maintains realistic patterns while protecting privacy is crucial for modern data workflows.

What You'll Learn

  • Step-by-step data generation process from planning to implementation
  • Multiple generation methods including statistical, AI-powered, and hybrid approaches
  • Quality validation techniques to ensure your synthetic data serves its purpose
  • Best practices for different use cases and industries
  • Common pitfalls and how to avoid them

Step 1: Define Your Requirements

Identify Your Use Case

Before generating synthetic data, clearly define what you need:

Development & Testing:

  • Database seeding for development environments
  • API testing with realistic payloads
  • Frontend component testing with diverse data scenarios
  • Load testing with large datasets

AI & Machine Learning:

  • Training data augmentation for better model performance
  • Balanced datasets for addressing class imbalance
  • Edge case generation for robust model testing
  • Privacy-safe model training

Research & Analytics:

  • Academic research with shareable datasets
  • Business intelligence without privacy concerns
  • Market analysis with synthetic customer data
  • Hypothesis testing with controlled datasets

Assess Data Requirements

Document your specific needs:

# Data Requirements Specification
dataset_type: "customer_data"
size: 100000  # Number of records
format: ["json", "csv", "sql"]
schema:
  - field: "customer_id"
    type: "string"
    pattern: "CUST-[0-9]{6}"
  - field: "email"
    type: "email"
    domain_restrictions: ["company.com", "gmail.com"]
  - field: "age"
    type: "integer"
    range: [18, 80]
    distribution: "normal"
    mean: 35
    std: 12
privacy_level: "high"  # high, medium, low
relationships:
  - "purchase_amount correlates with age and income"
  - "location affects phone number format"

Choose Quality vs Speed Trade-offs

Different approaches offer different benefits:

| Method | Quality | Speed | Complexity | Use Case | |--------|---------|-------|------------|----------| | Statistical | Medium | Fast | Low | Quick prototyping | | Rule-based | Medium | Fast | Medium | Business logic compliance | | AI-powered | High | Slow | High | Production ML training | | Hybrid | High | Medium | Medium | Most applications |

Step 2: Select Your Generation Method

Method 1: Statistical Generation

Best for: Quick development, simple relationships, known distributions

Basic Statistical Approach

import numpy as np
import pandas as pd
from scipy import stats

def generate_customer_data(n_samples=10000):
"""Generate realistic customer data using statistical distributions"""

# Age: Normal distribution (mean=35, std=12)
age = np.random.normal(35, 12, n_samples)
age = np.clip(age, 18, 80).astype(int)

# Income: Log-normal distribution (realistic income distribution)
income = np.random.lognormal(10.5, 0.6, n_samples)
income = np.clip(income, 20000, 500000).astype(int)

# Purchase amount: Correlated with income + random noise
purchase_base = 0.03 * income + np.random.normal(0, 50, n_samples)
purchase_amount = np.maximum(purchase_base, 10)

# Customer satisfaction: Beta distribution (skewed towards positive)
satisfaction = stats.beta.rvs(7, 2, size=n_samples) * 10

return pd.DataFrame({
    'customer_id': [f"CUST-{i:06d}" for i in range(1, n_samples + 1)],
    'age': age,
    'annual_income': income,
    'purchase_amount': purchase_amount.round(2),
    'satisfaction_score': satisfaction.round(1)
})

Generate sample dataset

synthetic_customers = generate_customer_data(5000)
print(synthetic_customers.head())
print(f"Data shape: {synthetic_customers.shape}")
print(f"Income correlation with purchase: {synthetic_customers['annual_income'].corr(synthetic_customers['purchase_amount']):.3f}")

Advanced Statistical Relationships

def generate_realistic_ecommerce_data(n_samples=10000):
    """Generate e-commerce data with complex relationships"""
    
# Customer demographics
age = np.random.normal(35, 12, n_samples)
age = np.clip(age, 18, 80)

# Income varies by age (career progression)
income_base = 25000 + (age - 18) * 1500  # Base income increases with age
income_noise = np.random.lognormal(0, 0.3, n_samples)
income = income_base * income_noise
income = np.clip(income, 20000, 300000)

# Spending varies by income and age
spending_propensity = 0.15 + (age / 100) * 0.1  # Older customers spend more percentage
base_spending = income * spending_propensity

# Seasonal and random factors
seasonal_factor = 1 + 0.3 * np.sin(np.random.uniform(0, 2*np.pi, n_samples))
random_factor = np.random.lognormal(0, 0.4, n_samples)

annual_spending = base_spending * seasonal_factor * random_factor
annual_spending = np.clip(annual_spending, 100, 50000)

# Purchase frequency (Poisson distribution)
purchase_frequency = np.random.poisson(12, n_samples)  # Average 12 purchases/year

# Average order value
avg_order_value = annual_spending / np.maximum(purchase_frequency, 1)

return pd.DataFrame({
    'customer_id': [f"CUST-{i:06d}" for i in range(1, n_samples + 1)],
    'age': age.round().astype(int),
    'annual_income': income.round().astype(int),
    'annual_spending': annual_spending.round(2),
    'purchase_frequency': purchase_frequency,
    'avg_order_value': avg_order_value.round(2)
})

Method 2: Rule-Based Generation

Best for: Business logic compliance, specific constraints, deterministic relationships

Business Rule Implementation

import random
from datetime import datetime, timedelta

class BusinessRuleGenerator:
def init(self):
self.product_categories = {
'Electronics': {'min_price': 50, 'max_price': 2000, 'margin': 0.3},
'Clothing': {'min_price': 20, 'max_price': 300, 'margin': 0.6},
'Home': {'min_price': 30, 'max_price': 1000, 'margin': 0.4},
'Books': {'min_price': 5, 'max_price': 100, 'margin': 0.5}
}

def generate_product(self, product_id):
    """Generate product with business rule compliance"""
    category = random.choice(list(self.product_categories.keys()))
    category_rules = self.product_categories[category]
    
    # Price within category constraints
    base_price = random.uniform(
        category_rules['min_price'], 
        category_rules['max_price']
    )
    
    # Cost based on margin requirements
    cost = base_price * (1 - category_rules['margin'])
    
    # Inventory follows business rules
    if base_price > 500:
        inventory = random.randint(5, 20)  # Expensive items: lower inventory
    else:
        inventory = random.randint(20, 200)  # Cheaper items: higher inventory
        
    # Discount rules
    if inventory > 100:
        discount = random.uniform(0.05, 0.20)  # High inventory gets discounts
    else:
        discount = 0
        
    return {
        'product_id': f"PROD-{product_id:06d}",
        'category': category,
        'base_price': round(base_price, 2),
        'cost': round(cost, 2),
        'inventory': inventory,
        'discount': round(discount, 2),
        'final_price': round(base_price * (1 - discount), 2)
    }

def generate_order(self, customer_data, products_data):
    """Generate order with realistic business logic"""
    customer = random.choice(customer_data)
    
    # Order size correlates with customer income
    if customer['annual_income'] > 80000:
        num_items = random.randint(2, 8)
    elif customer['annual_income'] > 40000:
        num_items = random.randint(1, 5)
    else:
        num_items = random.randint(1, 3)
        
    order_items = random.sample(products_data, min(num_items, len(products_data)))
    
    # Calculate totals
    subtotal = sum(item['final_price'] for item in order_items)
    
    # Shipping rules
    if subtotal > 100:
        shipping = 0  # Free shipping over $100
    else:
        shipping = 9.99
        
    # Tax calculation (8.5%)
    tax = subtotal * 0.085
    total = subtotal + shipping + tax
    
    return {
        'order_id': f"ORD-{random.randint(100000, 999999)}",
        'customer_id': customer['customer_id'],
        'items': order_items,
        'subtotal': round(subtotal, 2),
        'shipping': shipping,
        'tax': round(tax, 2),
        'total': round(total, 2),
        'order_date': datetime.now() - timedelta(days=random.randint(0, 365))
    }

Method 3: AI-Powered Generation

Best for: Complex patterns, high realism, large-scale production

Using Faker for Realistic Personal Data

from faker import Faker
import random

def generate_realistic_profiles(n_samples=1000, locale='en_US'):
"""Generate realistic user profiles using Faker"""
fake = Faker(locale)

profiles = []
for _ in range(n_samples):
    profile = {
        'user_id': fake.uuid4(),
        'first_name': fake.first_name(),
        'last_name': fake.last_name(),
        'email': fake.email(),
        'phone': fake.phone_number(),
        'address': {
            'street': fake.street_address(),
            'city': fake.city(),
            'state': fake.state(),
            'zip_code': fake.zipcode(),
            'country': fake.country()
        },
        'birth_date': fake.date_of_birth(minimum_age=18, maximum_age=80),
        'job_title': fake.job(),
        'company': fake.company(),
        'credit_card': {
            'number': fake.credit_card_number(),
            'provider': fake.credit_card_provider(),
            'expire': fake.credit_card_expire()
        },
        'created_at': fake.date_time_between(start_date='-2y', end_date='now')
    }
    profiles.append(profile)

return profiles

Generate localized data for different regions

us_profiles = generate_realistic_profiles(1000, 'en_US')
german_profiles = generate_realistic_profiles(500, 'de_DE')
japanese_profiles = generate_realistic_profiles(300, 'ja_JP')

GPT-Based Text Generation

import openai
import json

class GPTDataGenerator:
def init(self, api_key):
openai.api_key = api_key

def generate_product_reviews(self, product_info, num_reviews=10):
    """Generate realistic product reviews using GPT"""
    
    prompt = f"""
    Generate {num_reviews} realistic customer reviews for this product:
    Product: {product_info['name']}
    Category: {product_info['category']}
    Price: ${product_info['price']}
    
    Include varied ratings (1-5 stars), different review lengths, 
    and realistic customer concerns/praise. Format as JSON array.
    """
    
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.8
    )
    
    return json.loads(response.choices[0].message.content)

def generate_support_tickets(self, num_tickets=50):
    """Generate realistic customer support tickets"""
    
    prompt = f"""
    Generate {num_tickets} realistic customer support tickets with:
    - Varied issue types (technical, billing, shipping, returns)
    - Different urgency levels
    - Realistic customer language and concerns
    - Appropriate ticket categories
    
    Format as JSON array with fields: ticket_id, customer_email, 
    subject, description, category, priority, status.
    """
    
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.7
    )
    
    return json.loads(response.choices[0].message.content)

Step 3: Implement Quality Validation

Statistical Validation

from scipy import stats
import matplotlib.pyplot as plt

class DataQualityValidator:
def init(self, original_data, synthetic_data):
self.original = original_data
self.synthetic = synthetic_data

def validate_distributions(self):
    """Compare statistical distributions between real and synthetic data"""
    results = {}
    
    for column in self.original.select_dtypes(include=[np.number]).columns:
        # Kolmogorov-Smirnov test
        ks_stat, ks_p_value = stats.ks_2samp(
            self.original[column].dropna(), 
            self.synthetic[column].dropna()
        )
        
        # Anderson-Darling test
        combined_data = np.concatenate([
            self.original[column].dropna(),
            self.synthetic[column].dropna()
        ])
        ad_stat, ad_critical_values, ad_significance = stats.anderson(combined_data)
        
        results[column] = {
            'ks_statistic': ks_stat,
            'ks_p_value': ks_p_value,
            'ks_similar': ks_p_value > 0.05,
            'mean_diff': abs(self.original[column].mean() - self.synthetic[column].mean()),
            'std_diff': abs(self.original[column].std() - self.synthetic[column].std())
        }
        
    return results

def validate_correlations(self):
    """Check if correlations are preserved"""
    orig_corr = self.original.select_dtypes(include=[np.number]).corr()
    synth_corr = self.synthetic.select_dtypes(include=[np.number]).corr()
    
    correlation_diff = np.abs(orig_corr - synth_corr)
    max_diff = correlation_diff.max().max()
    mean_diff = correlation_diff.mean().mean()
    
    return {
        'max_correlation_diff': max_diff,
        'mean_correlation_diff': mean_diff,
        'correlations_preserved': max_diff < 0.1
    }

def generate_quality_report(self):
    """Generate comprehensive quality assessment"""
    dist_results = self.validate_distributions()
    corr_results = self.validate_correlations()
    
    # Summary statistics
    similar_distributions = sum(1 for r in dist_results.values() if r['ks_similar'])
    total_distributions = len(dist_results)
    
    report = {
        'overall_quality_score': (similar_distributions / total_distributions) * 100,
        'distributions_similar': f"{similar_distributions}/{total_distributions}",
        'correlations_preserved': corr_results['correlations_preserved'],
        'detailed_results': {
            'distributions': dist_results,
            'correlations': corr_results
        }
    }
    
    return report

Business Logic Validation

def validate_business_rules(data):
    """Validate that synthetic data follows business logic"""
    issues = []
    
# Rule 1: Purchase amount should correlate with income
income_purchase_corr = data['annual_income'].corr(data['purchase_amount'])
if income_purchase_corr < 0.3:
    issues.append(f"Low income-purchase correlation: {income_purchase_corr:.3f}")

# Rule 2: Age distribution should be realistic
if data['age'].min() < 18 or data['age'].max() > 100:
    issues.append(f"Unrealistic age range: {data['age'].min()}-{data['age'].max()}")

# Rule 3: Email format validation
email_pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
invalid_emails = data[~data['email'].str.match(email_pattern, na=False)]
if len(invalid_emails) > 0:
    issues.append(f"Invalid email formats found: {len(invalid_emails)} records")

# Rule 4: Purchase amounts should be positive
negative_purchases = data[data['purchase_amount'] < 0]
if len(negative_purchases) > 0:
    issues.append(f"Negative purchase amounts: {len(negative_purchases)} records")

return {
    'valid': len(issues) == 0,
    'issues': issues,
    'validation_score': max(0, 100 - len(issues) * 10)
}

Step 4: Scale and Optimize

Batch Processing for Large Datasets

import multiprocessing as mp
from functools import partial

def generate_batch(batch_size, start_idx, generation_function):
"""Generate a batch of synthetic data"""
return generation_function(batch_size, start_idx)

def parallel_data_generation(total_size, batch_size=1000, num_workers=4):
"""Generate large datasets using parallel processing"""

# Calculate batch parameters
num_batches = (total_size + batch_size - 1) // batch_size
batch_params = [(min(batch_size, total_size - i * batch_size), i * batch_size) 
                for i in range(num_batches)]

# Create partial function with fixed generation parameters
batch_generator = partial(generate_batch, generation_function=generate_customer_data)

# Process batches in parallel
with mp.Pool(num_workers) as pool:
    batch_results = pool.starmap(batch_generator, batch_params)

# Combine results
combined_data = pd.concat(batch_results, ignore_index=True)
return combined_data

Generate 100,000 records using parallel processing

large_dataset = parallel_data_generation(100000, batch_size=5000, num_workers=8)
print(f"Generated {len(large_dataset)} records")

Memory-Efficient Streaming

class StreamingDataGenerator:
    def __init__(self, batch_size=1000):
        self.batch_size = batch_size
        
def generate_stream(self, total_size):
    """Generate data in streams to avoid memory issues"""
    for start_idx in range(0, total_size, self.batch_size):
        batch_size = min(self.batch_size, total_size - start_idx)
        batch_data = generate_customer_data(batch_size)
        yield batch_data

def save_to_files(self, total_size, output_prefix="synthetic_data"):
    """Save large datasets directly to files"""
    file_counter = 0
    
    for batch in self.generate_stream(total_size):
        filename = f"{output_prefix}_batch_{file_counter:04d}.csv"
        batch.to_csv(filename, index=False)
        print(f"Saved {len(batch)} records to {filename}")
        file_counter += 1
    
    print(f"Total files created: {file_counter}")

Generate and save 1 million records in batches

generator = StreamingDataGenerator(batch_size=10000)
generator.save_to_files(1000000, "large_synthetic_dataset")

Step 5: Export and Integration

Multiple Format Export

import json
import sqlite3
from sqlalchemy import create_engine

class DataExporter:
def init(self, data):
self.data = data

def to_json(self, filename=None, pretty=True):
    """Export to JSON format"""
    json_data = self.data.to_dict('records')
    
    if filename:
        with open(filename, 'w') as f:
            json.dump(json_data, f, indent=2 if pretty else None, default=str)
    
    return json_data

def to_sql_inserts(self, table_name="synthetic_data"):
    """Generate SQL INSERT statements"""
    columns = ', '.join(self.data.columns)
    
    inserts = []
    for _, row in self.data.iterrows():
        values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in row])
        insert_stmt = f"INSERT INTO {table_name} ({columns}) VALUES ({values});"
        inserts.append(insert_stmt)
    
    return inserts

def to_database(self, connection_string, table_name="synthetic_data"):
    """Export directly to database"""
    engine = create_engine(connection_string)
    self.data.to_sql(table_name, engine, if_exists='replace', index=False)
    print(f"Data exported to {table_name} table")

def to_api_format(self):
    """Format for API responses"""
    return {
        "data": self.data.to_dict('records'),
        "metadata": {
            "total_records": len(self.data),
            "columns": list(self.data.columns),
            "generated_at": datetime.now().isoformat()
        }
    }

Usage example

exporter = DataExporter(synthetic_customers)
exporter.to_json("customers.json")
exporter.to_database("sqlite:///synthetic_data.db", "customers")
api_response = exporter.to_api_format()

Integration with Testing Frameworks

# pytest fixture for synthetic data
import pytest

@pytest.fixture
def synthetic_customer_data():
"""Provide synthetic customer data for tests"""
return generate_customer_data(100)

@pytest.fixture
def synthetic_product_data():
"""Provide synthetic product data for tests"""
generator = BusinessRuleGenerator()
return [generator.generate_product(i) for i in range(1, 51)]

Test example using synthetic data

def test_order_processing(synthetic_customer_data, synthetic_product_data):
"""Test order processing with synthetic data"""
generator = BusinessRuleGenerator()
order = generator.generate_order(synthetic_customer_data, synthetic_product_data)

assert order['total'] > 0
assert order['customer_id'] in [c['customer_id'] for c in synthetic_customer_data]
assert len(order['items']) > 0

API testing with synthetic data

def test_api_endpoints():
"""Test API with synthetic data"""
test_data = generate_customer_data(10)

for customer in test_data.to_dict('records'):
    response = requests.post('/api/customers', json=customer)
    assert response.status_code == 201
    
    # Test retrieval
    customer_id = customer['customer_id']
    get_response = requests.get(f'/api/customers/{customer_id}')
    assert get_response.status_code == 200

Common Challenges and Solutions

Challenge 1: Maintaining Realistic Relationships

Problem: Generated data feels artificial because relationships between fields aren't realistic.

Solution: Use correlation matrices and conditional generation:

def generate_correlated_data(n_samples=1000):
    """Generate data with realistic correlations"""
    
# Define correlation matrix
correlation_matrix = np.array([
    [1.0, 0.7, 0.5],  # age correlations
    [0.7, 1.0, 0.8],  # income correlations  
    [0.5, 0.8, 1.0]   # spending correlations
])

# Generate correlated random variables
mean = [35, 50000, 15000]  # age, income, spending
cov = np.diag([12, 20000, 8000])  # standard deviations

# Apply correlation
correlated_cov = np.sqrt(np.outer(np.diag(cov), np.diag(cov))) * correlation_matrix

# Generate multivariate normal data
data = np.random.multivariate_normal(mean, correlated_cov, n_samples)

return pd.DataFrame({
    'age': np.clip(data[:, 0], 18, 80).astype(int),
    'income': np.clip(data[:, 1], 20000, 200000).astype(int),
    'annual_spending': np.clip(data[:, 2], 1000, 50000).astype(int)
})

Challenge 2: Privacy Leakage

Problem: Synthetic data accidentally contains patterns that could identify real individuals.

Solution: Implement differential privacy:

def add_differential_privacy(data, epsilon=1.0, columns=None):
    """Add differential privacy noise to sensitive columns"""
    if columns is None:
        columns = data.select_dtypes(include=[np.number]).columns
    
protected_data = data.copy()

for column in columns:
    # Calculate sensitivity (max possible change from one record)
    sensitivity = data[column].max() - data[column].min()
    
    # Add Laplace noise
    noise_scale = sensitivity / epsilon
    noise = np.random.laplace(0, noise_scale, len(data))
    
    protected_data[column] = data[column] + noise

return protected_data

Apply differential privacy

private_data = add_differential_privacy(synthetic_customers, epsilon=0.5)

Challenge 3: Performance at Scale

Problem: Generation becomes slow with large datasets or complex relationships.

Solution: Use optimized algorithms and caching:

class OptimizedGenerator:
    def __init__(self):
        self.cache = {}
        
def generate_with_cache(self, cache_key, generation_func, *args):
    """Cache expensive computations"""
    if cache_key not in self.cache:
        self.cache[cache_key] = generation_func(*args)
    return self.cache[cache_key]

def vectorized_generation(self, n_samples):
    """Use vectorized operations for speed"""
    # Pre-compute lookup tables
    age_categories = np.random.choice(['young', 'middle', 'senior'], n_samples, p=[0.3, 0.5, 0.2])
    
    # Vectorized conditional logic
    base_income = np.where(age_categories == 'young', 35000,
                  np.where(age_categories == 'middle', 65000, 45000))
    
    # Add vectorized noise
    income_multiplier = np.random.lognormal(0, 0.3, n_samples)
    final_income = base_income * income_multiplier
    
    return pd.DataFrame({
        'age_category': age_categories,
        'base_income': base_income,
        'final_income': final_income.astype(int)
    })

Best Practices Summary

Data Quality

  1. Always validate generated data against business rules
  2. Compare distributions with real data using statistical tests
  3. Check correlations are preserved between related fields
  4. Test edge cases and boundary conditions

Privacy Protection

  1. Use differential privacy for sensitive numeric data
  2. Avoid direct copying of rare or unique patterns
  3. Implement k-anonymity for categorical data
  4. Regular audits for potential information leakage

Performance Optimization

  1. Batch processing for large datasets
  2. Vectorized operations instead of loops
  3. Caching for expensive computations
  4. Streaming for memory-efficient generation

Production Deployment

  1. Version control your generation code and parameters
  2. Monitor quality with automated validation pipelines
  3. Document methodology for compliance and reproducibility
  4. Implement rollback mechanisms for quality issues

Ready to implement your own synthetic data pipeline? Start with our free generator to experiment with different approaches, then scale up using the techniques covered in this guide.

Data Field Types Visualization

Interactive diagram showing all supported data types and their relationships

Export Formats

Visual guide to JSON, CSV, SQL, and XML output formats

Integration Examples

Code snippets showing integration with popular frameworks

Ready to Generate Your Data?

Start creating high-quality synthetic data in minutes with our powerful, AI-driven generator. No registration required, unlimited usage.

Start Generating Now - Free

Frequently Asked Questions

Start with statistical methods using libraries like Faker for simple realistic data, then progress to rule-based generation for business logic compliance. This approach lets you understand data relationships before moving to more complex AI-powered methods.
Use correlation matrices to define relationships, implement conditional generation where one field depends on another, and validate relationships using statistical tests. For example, ensure purchase amounts correlate with income levels and age affects spending patterns.
Monitor statistical distribution similarity (KS tests), correlation preservation, business rule compliance, and utility preservation (ML model performance on synthetic vs real data). Aim for p-values > 0.05 in distribution tests and correlation differences < 0.1.
Use streaming generation with batch processing, save data directly to files rather than keeping in memory, implement parallel processing for faster generation, and consider cloud-based solutions for very large datasets (>1GB).
Add differential privacy noise to sensitive numeric fields, implement k-anonymity for categorical data, avoid copying rare patterns directly, and regularly audit generated data for potential information leakage using privacy metrics.
Create rule engines that enforce constraints (e.g., shipping free over $100), use conditional logic for interdependent fields, validate generated data against business rules, and implement custom validators for domain-specific requirements.
Python is most popular with libraries like Faker, SDV, and CTGAN. R is excellent for statistical methods. For enterprise solutions, consider platforms like Mainly AI or Gretel.ai. Choose based on your technical expertise and scalability needs.
Train ML models on both real and synthetic data to compare performance, run statistical tests on distributions, validate business logic compliance, test with actual applications/workflows, and measure privacy protection effectiveness.
Yes! Hybrid approaches often work best: use statistical methods for basic distributions, rule-based generation for business logic, and AI methods for complex patterns. This combines the strengths of each approach while mitigating weaknesses.
Regenerate when underlying business rules change, real data patterns shift significantly, model performance degrades, or privacy requirements change. For development, monthly regeneration is often sufficient; for production ML, consider quarterly updates.